



### **COST Action FP1407**

# 1st Conference "Life Cycle Assessment, EPDs and modified wood"

#### Life cycle impacts of modified wood products

Lauri Linkosalmi, Doctoral student, Aalto University Kristiina Laine, Post-doc researcher, KTH - Royal Institute of Technology Lauri Rautkari, Professor, Aalto University

#### **Wood water behavior**



# Changes in dimensional stability, strength, and biological durability





#### **Wood modification**





During thermal modification part of the OH-goups are degraded leading to less interaction between wood and water





#### **ThermoWood process**

- Temperature raising to 100°C, with steam injection (to inhibit cracking, etc), wood drying -> 130°C (wood MC 0%)
- Temperature raising + thermal modification at 185-230°C for ~2-3 h (depending on wood species and desired properties)
- **3.** Cooling and stabilisation at 80-90°C (with steam) to final moisture content ~4-7 %.



#### **Environmental Product Declaration**

- **EN 15804 Environmental declaration for building products** ٠
- Define system boundary for the assessement ٠
- Declare emissions to air, ground and water ٠





KTH

5

#### Life cycle assessment







#### System boundary for assessment







# Life cycle impacts

Environmental impacts Economical impacts

Social impacts







## **Primary energy need in production stage**

|         |                                     | PE                              |                                        |                           |                                              |  |
|---------|-------------------------------------|---------------------------------|----------------------------------------|---------------------------|----------------------------------------------|--|
|         | Unit                                | Sawn timber (pine) <sup>1</sup> | Sawn timber<br>(softwood) <sup>2</sup> | Sawn timber<br>(softwood) | Heat treated sawn timber (pine) <sup>4</sup> |  |
| Density | kg/m <sup>3</sup>                   | 420                             | 420                                    | 413                       | 420                                          |  |
| MC      | %                                   | 15                              | 15                                     | 15                        | 5                                            |  |
| PERE    | MJ                                  | 2270                            | 853                                    | 1330                      | 2761                                         |  |
| PENR    | MJ                                  | 6850                            | 1650                                   | 330                       | 7697                                         |  |
| GWP     | kg CO <sub>2</sub> -e               | -672                            | -679                                   | -784                      | -258                                         |  |
| ODP     | kg CFC11 -e                         | 0,00000551                      | 0,0000000298                           | 0,00000000497             | 0,0000461                                    |  |
| POCP    | kg C <sub>2</sub> H <sub>4</sub> -e | 0,0203                          | 0,0486                                 | 0,0825                    | 0,12                                         |  |
| AP      | kg SO <sub>2</sub> -e               | 0,339                           | 0,612                                  | 0,242                     | 2,12                                         |  |
| EP      | kg PO <sub>4</sub> <sup>3-</sup> -e | 0,0752                          | 0,106                                  | 0,0493                    | 1,88                                         |  |
| ADPE    | kg Sb -e                            | 0,0000948                       | 0,00000781                             | 0,0000142                 | 0,000402                                     |  |
| ADPF    | MJ                                  | 623                             | 1390                                   | 318                       | 7794                                         |  |

Data sources 1) EPD-Norway 2) Wood for Good 3) IBU 4) EPD-Norway. Abbreviations: MC Moisture content, PERE Use of renewable primary energy, PENR Use of non-renewable primary energy, GWP Global Warming Potential, ODP Ozone Depletion Potential, POCP Photochemical Ozone Creation Potential, AP Acidification Potential, EP Eutrophication Potential, ADPE Abiotic Depletion Potential (Elements), ADPF Abiotic Depletion Potential (Fossil).





#### Conclusions

- Primary energy need increases by approximately 15–25% in heat treated timber compared to kiln dried sawn timber in production phase
- This primary energy needs to be gained back in later life cycle phases (use phase)
- Emissions are always energy production related
- More specific data from use stage is required to make meaningful comparison of the whole life cycle





#### References

EPD-Norway. 2015. EPD Skurlast av gran eller furu. Available at http://www.epd-norge.no/getfile.php/PDF/EPD/Byggevarer/NEPD-307179NO%20Skurlast%20av%20gran%20eller%20furu%20GK.pdf

EPD-Norway. 2014. EPD Termotre av gran og furu. Available at http://www.epd-norge.no/getfile.php/PDF/EPD/Byggevarer/NEPD00259N%20Termotre-av-gran-og-furu%20MoelvenWood%20GODKJENT.pdf

IBU EPD. 2015. EGGER Schnittholz technisch getrocknet. Available at http://construction-environment.com/download/CY84e88afX14dbf344596X31f5/Schnittholz\_trocken.pdf

Kuittinen & Linkosalmi. 2015. Compiling environmental product declarations for wood-based construction products - Instructions for inventory, life cycle assessment and documentation. Aalto University

ThermoWood Handbook. 2003. International ThermoWood Association. 66 p.

Wood for Good Lifecycle Database. 2013. Kiln Dried Sawn Softwood. Available at http://woodforgood.com/assets/Downloads/Kiln\_Dried\_Softwood\_v1.2\_2014-03-18.pdf



