How can we measure environmental impacts?

Prof. Callum Hill FIMMM

Norwegian Institute for Bioeconomy JCH Industrial Ecology Limited

enquiries@jchindustrial.co.uk

European standards

- EN 15643-1 Sustainability assessment of buildings Part 1: general framework
- EN 15643-2 Sustainability assessment of buildings Part 2: framework for the assessment of environmental performance
- EN 15804 Environmental product declarations core rules for the product category of construction products
- EN 15942 Environmental product declarations communication format – business to business
- EN 15978: Assessment of environmental performance of buildings – calculation method

Rating systems

Rating system	Country
Green Star	Australia
LEED Canada	Canada
DGNB Certification System	Germany
IGBC Rating System	India
LEED India	India
Comprehensive Assessment System for Building	Japan
Environmental Efficiency	
Green Star NZ	New Zealand
Green Star SA	South Africa
BREEAM	UK
LEED	USA
Building Environmental Assessment Method Plus (BEAM Plus)	Hong Kong
Evaluation Standard for Green Building (ESGB)	China

NIBIO

NORSK INSTITUTT FOR BIOØKONOMI

LEED

The Leadership in Energy and Environmental design (LEED) system was developed by the US Green Building Council (USGBC) in 1998 and is currently the most commonly used method to measure the environmental performance of a building. In order to obtain LEED certification, a building must obtain a certain number of points. Depending upon the type of construction or renovation being undertaken, one of arrange of LEED rating systems will apply. Each of which has a slightly different weighting of points. LEED (version 4) credits are divided into eight categories

LEED

- Location and transportation
- Sustainable sites
- Water efficiency
- Energy and atmosphere
- Materials and resources
- Indoor environmental quality
- Innovation in design
- Regional priority

LEED

Within the section entitled Materials and Resources there are 13 points available, with two points assigned for the provision of EPDs and two points allocated to material ingredients. In each section of the LEED system there are certain prerequisites that must be met, even though they do not count towards a building's total points. The building is then awarded LEED certification according to the following scores:

Category Points Certified 40-49 Silver 50-59 Gold 60-79 Platinum 80-110

The LCA aspects of the material composition of a building only contribute, at most, 4 out of 110 points, in terms of considering GWP and EE footprints. By comparison, 'access to quality transport' (for example) contributes 5 points.

NORSK INSTITUTT FOR BIOØKONOMI

LCIA

- Not the same as a traditional risk assessment (narrow focus)
- LCIA involves determining the impact of hundreds, if not thousands, of stressors on the environment (broad range)
- Impact categories need to be defined and agreed upon
- There is uncertainty associated with them

Impact categories

- Midpoint versus Endpoint modelling
- Midpoint models reflect the potency of stressors at a common midpoint within a cause-effect chain
- Endpoint reports on the consequences of the release of stressors into the environment

Impact categories

- Selection and definition (e.g., global warming)
- Classification (e.g., carbon dioxide to global warming)
- Characterisation (e.g., impact of carbon dioxide and methane)
- Normalisation (e.g., comparing CO₂ and CH₄)
- **Grouping** (e.g., sorting indicators by local, regional global)
- Weighting (emphasising the most important impacts)
- Evaluating and reporting (understanding reliability)

Midpoint categories

- Global warming
- Stratospheric ozone layer depletion
- Acidification of soil and water
- Eutrophication
- Tropospheric photochemical ozone creation
- Abiotic resource depletion elements
- Abiotic resource depletion fossil fuels

Endpoint categories

- Skin cancer
- Species loss
- Flooding
- Drought
- Reduced life expectancy

(Much higher uncertainty)

Midpoint impacts global warming potential (GWP)

- Carbon dioxide (CO₂)
- Methane (CH₄)
- Nitrous oxide (N₂O)
- CFC-11, CFC-12, HCFC-22, HCFC-141b, HCFC-142b, HFC-125, HFC-134a, HFC-152a, HFC-23, PFC-14, PFC-116, etc., CCl₄, CH₃CCl₃

Radiative forcing (2005)

Gas	Concentration	Radiative forcing (W m ⁻²)			
Carbon dioxide	379 ppm	+1.66			
Methane	1774 ppb	+0.48			

Methane

• But – methane slowly oxidises in the atmosphere to water and carbon dioxide

Gas	20-yr	100-yr	500-yr
CO ₂	1	1	1
CH ₄	72x	25x	7.6x

1 kg methane has a GWP_{100} value of 25 kg CO_2 equivalents (CO_{2e})

Midpoint impact categories (EN15804)

Category	Abbreviation	Unit
Global warming potential	GWP	kg CO ₂ equivalents
Ozone depletion potential	ODP	kg CFC-11 equiv.
Acidification potential of soil and water	AP	kg SO ₂ equiv.
Eutrophication potential	EP	kg (PO ₄) ³⁻ equiv.
Photochemical ozone creation potential	POCP	kg ethene equiv.
Abiotic depletion potential- elements	ADP-elements	kg Sb equiv.
Abiotic depletion potential – fossil fuels	ADP-fossil fuels	MJ, net calorific value

Product over time

JCH

NIBIO NORSK INSTITUTT FOR BIOØKONOMI

Reporting on life cycle stages according to EN15804

PRODUCT STAGE		CONSTRUCTION STAGE		USE STAGE			EN	D OF LI	IFE ST4	AGE	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARY					
Raw material supply	Transport	Manufacturing	Transport	Construction-Installation process	Use	Maintenance	Repair	Replacement ⁽¹⁾	Refurbishment ⁽¹⁾	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-recovery Recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D

EPD

Environmental Product Declaration

Type III environmental declaration

ISO 14025

Product Category Rules (PCR)

Product Category Rules for preparing an environmental p declaration (EPD) for Product Group:

Building Envelope Thermal Insulation The product group includes all commercially available building envelope thermal insulatio regardless of material type, including but not limited to: cellular glass, mineral fibre insulat slag or glass), cellulose-based insulation, textle-based insulation, and polymer-based insi

VERSION 1.2 October 29, 2013 VALID THROUGH September 12, 2016

PRODUCT CATEGOR'

PRODUCT CATEGORY RULES DATE 2013-03-15

CONSTRUCTION PRODUCTS AND CPC 54 CONSTRUCTION SERVICES

2012:01 VERSION 1.2

EPD°

PCR Guidance-Texts for Building-Related Products and Services

From the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU)

Part B: Requirements on the EPD for Wood based panels

NIBIO

NORSK INSTITUTT FOR BIOØKONOMI

Scope of LCAs and EPDs

ENVIRONMENTAL PRODUCT DECLARATION as per ISO 14025 and EN 15804

Declaration holder Kronopky GmbH / Kronopol Sp. z.o.o. Publisher Institut Bauen und Umwelt (IBU) Programme holder Institut Bauen und Umwelt (IBU) Declaration number EPO-KRO-2012311-EN ECO EPO Ref. No. ECO-00000051 Seue date 28.07.2012 Validity 27.07.2017

KRONOTEC WP50 / DP50 Kronoply GmbH / Kronopol Sp. z o.o.

www.bau-umwalt.com

General information

1

Kronoply GmbH / Kronopol Sp. z o.o.	KRONOTEC WP50 / DP50					
Programme holder	Declaration holder					
IBU - Institut Bauen und Umwelt e.V.	Kronoply GmbH					
Panoramastr. 1	Wittstocker Chaussee 1					
D-10178 Berlin	D-16909 Heilgengrabe					
	Kronopol Sp z o.o.					
	ul.Serbska 56					
	PL-68200 Zary					
Declaration number	Declared product/unit					
EPD-KRO-2012311-EN	1 cubic metre of KRONOTEC WP50 / DP50					
This Declaration is based on the Product Category	Validity					
Rules:	This document refers to the KRONOTEC WP50 / DP50					
Wood Materials, 06-2011	boards manufactured by Kronopol in PL-68-200 Zary					
(PCR tested and approved by the independent Committee of Experts (SVA))	recorded in 2008 by the company in Zary. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.					
Issue date	Verification					
28.07.2012	The CEN EN 15804 standard serves as the core PCR.					
Valid until	Verification of the EPD by an independent third party in					
27.07.2017	accordance with ISO 14025					
Whennages	internal x external					

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umweit e.V.)

UL

JCH

Prof. Dr.-Ing. Hans-Wolf Reinhardt (Chairman of the Committee of Experts (SVA))

Dr. Frank Werner (Independent auditor appointed by the SVA)

RESULTS OF THE LIFE CYCLE ASSESSMENT - ENVIRONMENTAL IMPACTS: 1m ³ KRONOTEC WP50 / DP50							
	Production	Credits					
Parameter	Unit	A1-A3	D				
Global Warming Potential (GWP)	[kg CO ₂ equiv.]	-444	181				
Ozone Depletion Potential (ODP)	[kg CFC11 equiv.]	8.93E-06	-3.94E-07				
Soil and water Acidification Potential (AP)	[kg SO ₂ equiv.]	5.48	-3.38				
Eutrification Potential (EP)	[kg PO4 ³⁺ equiv.]	0.255	-0.071				
Photochemical Ozone Creation Potential (POCP)	[kg ethene equiv.]	0.321	-0.186				
Abiotic Depletion Potential of elementary resources (ADPE)	[kg Sb equiv.]	7.26E-04	-3.09E-05				
Abiotic Depletion Potential of fossil resources (ADPF)	[MJ]	7197	-10482				

RESULTS OF THE LIFE CYCLE ASSESSMENT - USE OF RESOURCES: 1m ³ KRONOTEC WP50 / DP50							
		Production stage	Credits				
Parameter	Unit	A1-A3	D				
Regenerative primary energy as an energy carrier (PERE)	[MJ]	3355	-43				
Regenerative primary energy for material use (PERM)	[MJ]	9429	0				
Total regenerative primary energy (PERT)	[MJ]	12784	-43				
Non-regenerative primary energy as an energy carrier (PENRE)	[MJ]	3248	-10519				
Non-regenerative primary energy for material use (PENRM)	[MJ]	4264	0				
Total non-regenerative primary energy (PENRT)	[MJ]	7512	-10519				
Use of secondary materials (SM)	[kg]	0	0				
Regenerative secondary fuels (RSF)	[MJ]	0	0				
Non-regenerative secondary fuels (NRSF)	[MJ]	0	0				
Use of fresh water resources (FW)	[m³]	7.7	-0.17				

EXAMPLE – TIMBER PRODUCTS

GWP (kg CO₂ eq) 1 m³ of product

GWP (kg CO₂ eq) 1 kg of product

NIBIO NORSK INSTITUTT FOR BIOØKONOMI

NIBIO NORSK INSTITUTT FOR BIOØKONOMI

Embodied energy (MJ per kg of product)

Unit of comparison

- 1 kg is a declared unit
- This is used as an input into other calculations for a more realistic comparison

Unit of comparison

- But here we are comparing weight
- To make a sensible comparison we need to use a functional unit
- A wall element of a given area (e.g. 1m²)
- A window element of a given area
- A door element of a given area
- A beam with given properties
- Etc.

EXAMPLE – INSULATION MATERIALS UNIT OF COMPARISON 1KG ISOBIO PROJECT

NATURALLY HIGH PERFORMANCE IN SULATION

Development and demonstration of highly insulating, construction materials from bio-derived aggregates

ISOBIO

Development of new approach to insulating materials through the novel combination of existing bio-derived aggregates with low embodied carbon with innovative binders to produce durable composite construction materials.

ISOBIO Project targets

50% reduction in embodied energy and CO₂ emissions

15% reduction in total costs

20% better insulation properties than conventional materials

5% total energy reduction over the lifetime of a building

Challenges

Condensation prevention within the panels Maintain moisture buffering Fire retardancy

Preserving the structure integrity of the building

New protective treatments

Water repellenceFire performance

Improvement of existing products

- Fibre insulation
 - Hemp Lime
- Clay Board

Development of new products

 Use of natural lignin to bind bio-aggregate

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°636835.

Functional unit

- Thermal conductivity of a material is usually reported as a lambda (λ) value (units: W/m.K) which is the quantity of heat in Watts conducted through a 1 m² wall of thickness 1 m when the temperature difference is 1 K.
- Insulation in a building is reported as a R (m².K/W) or as a U value (W/m².K) – depends on thickness
- R is thermal resistance and U is thermal transfer coefficient

Functional unit

Functional unit (1 m² with an R value of 1)

Conclusions

- Have to be cautious when making comparisons between different materials
- Only fair comparison is with a functional unit
- Timber products are always superior when the sequestered atmospheric carbon is taken into account (GWP)

