BC

Testing hygrothermal properties for information on durability?

COST FP1407 3-5th April Bangor, UK

Simon Curling

Introduction

We've seen that;

- The use of alternative bio-based materials in building is on the increase.
- If a product is bio-based it runs the risk of microbial attack
- This may lead to structural, aesthetic or health problems.

How do you stop microbial attack?

Keep it dry!

The End

But really...

How do we test for durability vs biological attack

- Standard lab methods Fast and reproducible
 - Mould tests spore suspensions
 - Decay fungi Agar block test
- Field tests Time consuming

Fungal Exposure tests

6

Laboratory tests

- Normally provide plenty of moisture in terms of humidity and/or agar.
- Fast and reproducible
- But...Is this an appropriate test for modified wood?

Wood testing

- EN 113 tests used for preservative and natural durability tests states
 - Discount any specimen having an MC of less than 25% at the end of the test.

- But if the decay protection mechanism is the changed moisture relationship ...
 - Can we look at the hygrothermal properties to predict how a material will behave.

Q

How dry is dry?

- What's the minimum water content needed for growth
 - 20%? basic rule for decay fungi.
- Keep wood at 0% moisture?
 - Unrealistic!

10

Sources of water

- Contact
 - Immersion
 - Capillary action
- Vapour sorption
 - Humidity
 - Condensation

How much water can a material hold?

- In wood we talk about bound and free water.
- Other materials may mention water holding capacity

Material behaviour.

• Do all materials behave the same way under the same moisture environments

- No!

- Different materials will have different sorption properties
- Different materials can have very different EMC's at the same humidity value

13

How can we test behaviour?

- Expose materials to differing moisture conditions and sources and test their behaviour.
- Contact
 - Immersion/ capillary action
- Sorption
 - Vapour sorption
 - Humidity chambers
 - Moisture permeability

Contact Hygroscopic property testing - immersion

- Water absorption partial immersion: EN 15148
- Liquid transport co-efficient: EN15148
 - Bottom of sample (>5mm) immersed into water
 - Uptake of water determined by mass change over time

Immersion testing

Test ends after 24hrs or when the water reaches the top

15

16

Water absorption by partial immersion

Liquid transport co-efficient

17

18

Maximum moisture content obtained

19

Implications

- · How fast will a material absorb water
 - Short term weather events
 - Installation issues
 - Leaks
- Also how fast will it dry?

Fungal requirements

- How long does a material need to be at a high enough moisture content for fungi to grow?
 - Mould/stain fungi will be initial colonisers
 - Decay fungi subsequent attack
- Can established fungi survive dry periods?
 - Moisture cycling

20

Out of contact Sorption properties

22

Dynamic Vapour sorption

- Small samples of material exposed to differing RH conditions
- Water absorption determined by mass change
- Isotherm developed from sorption/desorption curves.
- EMC at set RH values

Typical Moisture isotherm

- Material Specific
- Change with temperature
- Change with cycling
- Hysteresis between
 - wetting and drying

23

25

Dynamic vapour sorption – pros and cons

- Reliable
- Reproducible
- Quick

- Few days up to maybe a week

- Small sample size
- May not account for product scale effects

26

Humidity chambers/salt tanks

- Use saturated aqueous solutions of various salts to produce a defined humidity value within a chamber or tank.
- EMC at set RH values
- Produces isotherm curves

Salts used for humidity chambers

- Desiccants
 - Calcium chloride, -
- b) Aqueous solutions
 - Magnesium nitrate,
 - Potassium chloride,
 - Ammonium dihydrogen phosphate,

29

Salt tanks – pros and cons

- Can take much larger sample sizes
 Determine bulk effects of a product
- Takes much longer time period (several months!)
- Can give different results to DVS!

30

Water vapour permeability

- Its also important to know how water moves through a material and not just how much the material absorbs.
- Water vapour permeability
- May have effects on adjacent materials.

Water vapour permeability testing

When thinking about moisture relationships

- We have to account for contact or vapour sorption
- Material or bulk (product) effects
- Permeability, transmission rates and actual amounts of water present!

33

So what does this mean for the fungi and material durability

- Still need methods to screen new materials
- Fast method developed by Bronia Stefanowski can be used to determine differing growth intensity of moulds under differing conditions.
 - BK Stefanowski, SF Curling, GA Ormondroyd (2017). International Biodeterioration & Biodegradation 116, 124-132

Can we put all this information together to determine risk?

- There are numerous models for the risk of mould growth under varying humidity risks.
- A recent one is the isopleth developed at Fraunhoffer in Germany

Material specific risk

- Isopleth diagrams for mould fungi
- Colour coded risks
- Regions and values are material specific

Courtesy of the Fraunhofer Institute Germany

What about the interaction of materials?

- Materials interact with each other
- If biobased materials are used in combination what are the implications for durability
- Modelling based on properties?
- Testing lab, field or service?

Testing durability of materials in combination

- Based on EN 113
- Uses pad of insulation between fungus and wood block
- Used Coniophora puteana (brown rot)

Test assembly

Results!

 Low levels of growth with wool pads

Mineral wool

 Growth on and decay of block evident

Hemp!

Considerable growth and decay of both pad and block!

Post exposure moisture content

Mass loss

45

In Summary

- We need data from testing for modelling
- We need to understand
 - How it was obtained
 - How does it apply to our chosen material
 - Is our material affected by interactions with other materials

Thank you for listening

• Any questions

