

H₂O and biomaterials

COST Action FP1407 Training School

4th April 2017 Dr Morwenna Spear

INNOVATION IN BIO-MATERIALS FOR INDUSTRY

What happens when wood gets wet?

- The wet state is wood's natural state
- Trees are designed for fluid flow by capillary action
- Wetting reverses **some** of the processes which occurred when the wood originally dried out
- Water is adsorbed to sites on the surface, and inside the wood cell wall

What happens when wood gets wet?

- Original drying caused the wood to contract from its native state
- Adsorption of water onto hydroxyl groups within hemicellulose re-opens micro-voids
- This can happen by two routes: wetting by liquid water & by water vapour

INNOVATION IN BIO-MATERIALS FOR INDUSTRY

What happens when wood gets wet?

- Swelling in the regions between microfibrils causes a net swelling of the whole piece of wood
- Tangential > Radial > > Longitudinal

Water adsorption = power

INNOVATION IN BIO-MATERIALS FOR INDUSTRY

Water uptake - grain orientation

Changing the relationship of wood and water

 Wood modification and surface treatments can change this

INNOVATION IN BIO-MATERIALS FOR INDUSTRY

Wood modification - reminder

Lumen filling	Cell wall filling	Cross linking - internal	Cross linking	Reaction with wood polymers	Degradation of cell wall	
		•••		 • •	 £_	

Ormondroyd G, Spear M, Curling S (2015) Proceedings of ICE: Construction and Materials 168(4):187-203

Wood modification

Modification method	Commercial	Principle	
Heat treatment	X	 ⊷	
Acetylation (Accoya)	х	••	
Melamine resin	(X)	0	
DMDHEU (Belmadur)	x		
Furfurylation(Kebony)	х		
Silicone/Silane	(X)		
oil / wax/ parafins	x		

INNOVATION IN BIO-MATERIALS FOR INDUSTRY

How do we measure the benefit?

Altering the hemicellulose composition (thermal mod.) Blocking the hydroxyl groups (acetylation)

- · Soaking to observe swelling
- Anti-swelling efficiency (ASE)
- · Conditioning experiments at elevated humidity
- Equilibrium moisture content (EMC)

Swelling coefficient and ASE

Conditioning study - oil heat treated wood

What can we achieve?

	Ассоуа	Kebony	Belmadur	Thermowood
ASE	70-80%	40-60%	60%	Up to 90%
EMC (20°C 65% r.h.)	3.3%	0.1%	7.8%	6 to 8%

INNOVATION IN BIO-MATERIALS FOR INDUSTRY

Dimensional stability changes with species

- Just as moisture movement relates to wood anatomy
- The inhibition of moisture movement on thermal treatment does also
- Restriction of movement in tangential direction is generally greater than radial

	ASE _r	ASEt	
Beech	10	13	
Birch	13	23	
Spruce	11	40	_
Scots pine	33	41	
Radiata pine	35	40	

Tjeerdsma B. (1998) IRG/WP 98-40124 Militz H. (2002) IRG/WP 02-40241

Equilibrium moisture content on conditioning

- Uptake of water vapour in salt talks
- Oil heat treated wood

	33% rh			
UT pine	4.99	8.87	15.92	
1 hour	2.05	3.80	7.86	
2 hour	2.59	4.35	9.01	_
3 hour	2.57	4.17	8.77	
ASE 1h	47.43	50.57	34.79	
ASE 2h	49.13	58.21	34.83	
ASE 3h	40.33	54.80	33.72	
)

INNOVATION IN BIO-MATERIALS FOR INDUSTRY

Typical isotherm of wood

Effect of thermal modification on Sessendok

INNOVATION IN BIO-MATERIALS FOR INDUSTRY

How much water will the wood be exposed to?

Use class	Conditions	Wood moisture content	
1	Interior, dry	Under 20%	
2	Interior, occasional wetting or humidity	Occasionally above 20%	
3.1	Exterior, above ground, covered	Frequently above 20%	
3.2	Exterior, above ground, exposed to weather and frequent wetting	Frequently above 20%	
4	Exterior, ground contact	Permanently above 20%	
5	Marine or fresh water	Permanently above 20%	

Use classes according to BS EN 335:2013

Water uptake and retention

- Study on plywood moisture content in outdoor exposure by Li et al. (2016) European Journal of Wood and Wood Products 74: 211- 221
- · Average moisture content correlates well with rainfall
- Ply 2 shows peak moisture content which coincides with solar irradiation

INNOVATION IN BIO-MATERIALS FOR INDUSTRY

Time of wetting data

• Days with MC higher than 20%

Predicting duration above 20% m.c.

- Long running research by Brischke and co-workers stared with double layer test – at sites across Europe
- · Temperature and m.c. measured within the wood
- Moisture content can be related to relative humidity (u_p)
- And related to rainfall events (u_r)
- For the proposed model

 $u_{\phi} = 0.7 \phi^3 - 0.8 \phi^2 + 0.42 \phi + 0.0077$ $u_r t_i = u_{\phi} t_i [1+k_r]$

 where k_r is a factor for species and rainfall duration

INNOVATION IN BIO-MATERIALS FOR INDUSTRY

Mapping decay potential

- Decay potential, as mapped by Hansson et al. (2012) WCTE Auckland, New Zealand, Timber Engineering Challenges and Solutions, pp. 295-303
- Values are relative to the decay potential at Uppsala, Sweden
- For this model k_r of 0.8 was used, but different species interact differently with moisture

igure 1: Example of relative decay potential for Europe indicated as relative doses for 60 European sites (circles) alculated with a performance model based on data from Meteonorm and ECA & D. Relative dose compared to Uppsala,