

Near-Infrared (NIR) hyperspectral imaging at high resolution and the difficulty to calibrate for the three main wood components

Nele Defoirdt

Joris Van Acker

Jan Van den Bulcke

Mapping properties on stem disks

Poplar disks with induced tension wood

Flatbed scan

→ Tension wood visible with naked eye on not sanded disks

2

NIR scanning hardware specifications

- Detector
 - Line camera
 - Range 800-2500 nm
 - 320 spatial pixels & 256 spectral pixels
- Light source
 - quartz tungsten halogen lamps
- Scan
 - Spectral resolution 0.5 mm
 - Sample step size 5 or 10 degrees (rotational) or 0.5 mm (translational)
 - Exposure time 6 ms, 50 frames averaged for a single line scan
- Software
 - Camera control and sample movement implemented in Labview

NIR scanning software specifications

- Corrections
 - Lens distortions
 - Light intensity correction (reference material in each scan)
 - Non-linear lens effects avoided by clipping the outer detector pixels
- Pre-processing to correct for detector noise
 - Normalization (reference material?)
 - Transformation to absorbance values
 - Noise filtering
- Pre-processing to correct for non-chemical bias
 - \circ Detrending
 - \circ Mean centering
 - o Savitsky-Golay derivation or second derivative
- Model building by partial least squares

Slice from hyperspectral NIR image

Rotational scan

Translational scan

Mapping via modelling: density

NIR derived density

X-ray derived density

NIR derived α -cellulose content

NIR derived lignin content

Calibration

- One-to-one relation between NIR-signal and properties to model
- The smaller the spot of the one-to-one relation the more pure the signals and the relation
- The more spots covering the potential variation of the NIR-signal and the wood properties, the better the model

Determining chemical composition of small amounts of wood

Analytical pyrolysis...

→ Calibrated against wet chemical analysis

➔ Accuracy of wet chemical analysis

→ Calibration is just as accurate as the data it is based on...

• Other options?

14

FACULTY OF BIOSCIENCE ENGINEERING

UNIVERSITE

UGent OODLAB

Joris.VanAcker@UGent.be Jan.VandenBulcke@UGent.be Nele.Defoirdt@UGent.be www.woodlab.be www.ugct.ugent.be www.inCT.be (spin-off) www.xre.be (spin-off)

© All pictures are property of UGCT and WOODLAB (or mentioned otherwise) It is not allowed to use them without permission