

Bio-materials characterization with NIR

Anna Sandak & Jakub Sandak

Outline

Tendencies in biomaterials developmnet

Why spectroscopy?

NIR in bio-materials characterization

Trends in NIR applications

Goals

- to exploit the potential of near infrared spectroscopy
- to **demonstrate** its capabilities for bio-based materials characterization
- to highlight the potential of the NIR as a tool capable of providing complementary information to other techniques
- to **present** current trends in NIR developments

Bio-materials in construction sector

- In Italy 1 on 12 buildings is made of wood and growing tendency is observed nowadays
- Bio-based materials are often used for retrofitting of existing structures, upward construction or vertical gardens
- Buildings that use bio-materials are not just sustainable, strong and durable; they are also beautiful

Development priorities

Structural components

(need for developed wood products -Engineered Wood Products, high strength wood, moisture resistant sills, light-weight beams/joists/studs of bio-composites, sandwich panels for exterior walls)

Insulation

(need for compactable bats of cellulose insulation, environmentally friendly fire impregnation, high-performance insulation that provides thinner walls, insulation, optimized for soundproofing)

Barrier Materials

(need for bio-based wind and vapor barrier for moisture-proof exterior walls, waterproofing for wet areas, **façade** and roofing materials **with improved durability/serviceability**

Durability and performance

Surface properties

ļ	eveling						
roughnoon		outlook	re	sistance t	o abras	sion	
roughness	pattern			W	,		
		touch			experience		
resistance to	dirt	brighntes	S	fa	acture		
	soft	feel	durability			waviness	
color		h o r d o o	gl				
matting effect		narunes	55				
softiness	contamina oftiness		adhe	sion	temp	erature	
	SI	urface free	ice free energy		activity	1	
resistanc	e to scratch		aseptic			water repellency	

How to assess properties?

Why NIR spectroscopy?

- No need special sample preparation
- Non-destructive testing
- Relatively fast measurement
- No residues/solvents to waste
- Determination of many components simultaneously
- High degree of precision and accuracy
- Direct measurement with very low cost

Not self standing technology
 Overlapping of spectral peaks
 Not straightforward interpretation
 Needs statistics methods for data analysis

NIR applications

chemical industry, microanalysis, pharmaceutical analysis, soil, polymers, food and beverages, surface science, fuels, textile industry, art conservation, forensics, PAT, remote sensing

and also **wood and paper industry**

...but what can we see in wood?

11

Cellulose (40-50%)

- linear polymer
- long chain (DP 5000-10000)
- B-D-Glucopyranose units
- 1,4-glycosidic bonds
- hydroxyl groups bonds
- different kind in wood:
 - amorphous,
 - semi-crystalline,
- oups crystalline

Lignin (20-30%)

Softwood (guaiacyl units) Hardwood (guaiacyl + syringyl units)

Hemicellulose (25-35%)

CH2OH

Xilose

Arabinose

CH_OH

OH

- hetero-polysaccharides
- short chain (DP 150-200)
- amorphous
- high reactivity •
- various composition for hardwood and softwood

NIR & biomaterials characterization

- Chemical compositions (cellulose, lignin, extractives)
- Physical and anatomical characterization (density, moisture, calorific value, microfibryl angle, defects detection, sapwood/heartwood detection)
- Mechanical properties (compression, tension, MOE, MOR)
- Identification and monitoring others properties of wood (decay monitoring, weathering, waterlogging, thermal treatment, chemical modifications)
- Paper industry (weight, thickness, moisture, Kappa number, mechanical resistance, type of pulp/paper)

Virgin wood

Species recognition

Wood provenance

Clones recognition

Exotic wood evaluation

Biomass characterization

•

Recognition of wood species

01- Picea abies, 02-Abies alba, 03-Pinus cembra, 04-Larix decidua, 05-Pinus sylvestris, 06-Pinus ponderosa, 07-Tsuga, 08- Thuja sp., 09-Quercus robur, 10-Robinia pseudoacacia, 11-Castanea sativa, 12-Iroko, 13-Afrormosia, 14-Okumè, 15-Sipo, 16-Meranti, 17-Wengè, 18-Azobè, 19-Ipè, 20-Itauba, 21-Pau Rosado, 22-Teck, 23-Bangkirai

Use of CA for species classification

Wood provenance & NIRS

2163 trees of Norway spruce from 75 location in 14 European countries 2163 samples measured x 5 spectra/sample = **10815 spectra**

Differentation of origin

samples form 14 countries (75 locations); totally **10815 spectra** was analyzed and evaluated

Austria A Bulgaria V Czech Republic Croatia Estonia Finland
 France
 Germany
 Hungary
 Italy
 Norway
 Poland
 Romania
 Sweden

Principal Component Analysis

region: 9590-5250cm⁻¹, 5100-4160cm⁻¹

Cluster Analysis

CA – wooden samples from 3 different districts of Cadino valley **G** ²³ Note: second derivative, vector normalization, Ward's algorithm, region: 7089-5072cm⁻¹

Identification of agricultural residues

Reynoutria sachalinensis¶

Particleboards characterization

Raw resources: Eastern redcedar (Juniperus virginiana L.)

Single- and three-layers panels

manufactured from raw material using 9% urea formaldehyde, combination of 15% modified corn starch and 2% urea formaldehyde adhesive

Selection of biomass for optimal bio-conversion process

PCA of willow clones. Note: pre-processing: 2nd derivative + vector normalization,
17 smoothing points, region: 6869-5847 cm⁻¹, method: factorization, 3 factors

26

Willows utilization

Suggested conversion path

1

1

http://www.seco.cpa.state.tx.us/publications/renewenergy/biom assenergy.php

	thermo- chemical	mechano- chemical	chemical	pharmaceut ical	phytoremediation		on
#1	✓	×	×	✓	×	×	×
#1	0.93	0.07	0.13	0.96	0.19	-0.10	0.00
#2	<	×	×	\checkmark	×	×	×
	0.98	0.04	-0.01	0.98	0.44	-0.03	0.02
#2	<	×	×	\checkmark	×	\checkmark	✓
#3	0.97	0.13	0.01	1.02	0.57	0.88	0.33
#4	<	×	\checkmark	\checkmark	×	\checkmark	×
#4	1.05	-0.07	1.04	0.99	0.61	0.99	0.20
#5	✓	×	×	✓	×	×	\checkmark
#5	0.89	0.13	0.19	0.80	0.57	-0.06	0.19
#6	×	×	×	✓	\checkmark	×	×
#0	0.05	-0.05	-0.13	1.14	0.68	0.15	0.42
#7	×	~	×	×	×	×	×
#1	-0.08	0.78	0.02	0.03	0.33	-0.07	0.50
#8	×	~	×	×	×	×	×
#0	0.09	1.10	-0.07	-0.11	0.06	0.00	-0.03
#0	×	~	×	×	×	×	×
#9	-0.05	0.90	-0.06	0.02	0.28	0.15	0.30
#10	×	×	×	×	×	×	×
#10	-0.03	0.04	0.07	0.03	0.09	0.14	-0.11
#11	×	×	✓	×	\checkmark	\checkmark	×
#11	-0.02	-0.05	1.01	-0.06	1.19	0.84	0.31
#12	×	×	\checkmark	×	\checkmark	×	×
#12	-0.04	-0.07	1.05	-0.04	1.32	-0.15	0.22
#13	×	×	\checkmark	×	\checkmark	×	×
	-0.02	-0.04	0.93	0.08	1.22	0.32	0.35
#14	×	×	✓	×	\checkmark	\checkmark	✓
#14	-0.04	-0.04	0.92	0.10	1.00	0.86	0.66
#15	✓	\checkmark	\checkmark	×	\checkmark	×	×
#15	1.11	0.95	0.84	0.00	1.04	0.09	0.11
#16	×	~	×	×	\checkmark	\checkmark	✓
#10	0.16	1.12	-0.02	0.06	1.31	1.12	0.60
#17	×	×	✓	×	\checkmark	×	×
#17	0.06	0.06	1.07	0.01	1.10	-0.14	-0.05
Disorimin		high content of:		high accumulation of:			
ation rule	high HHV	cellulose	hemicelluos e	extractives	Zn	Pb	Cu
Threshold rule	HHV _{exp} >20.0	X _c >38%	X _{he} >34%	<i>X_e</i> >11%	X _{Zn} >55ppb	X _{Pb} >8ppb	X _{Cu} >8ppb
Average prediction error	0.06	0.08	0.07	0.06	0.29	0.11	0.29

1

Chemical analysis

- **Cellulose** (by Browning)
- holocellulose (by Browning)
- lignin (T 222 om-06 TAPPI)
- pentosans (T 223 cm-01 TAPPI)
- hot water extractives (T 207 cm-08 TAPPI)
- cold water extractives (T 207 cm-08 TAPPI)
- 1% NaOH extractives (T 212 om-07 TAPPI)
- organic solvent extractives (T 204 cm-07 TAPPI)

NIR PLS calibration models #1 of willows chemical composition (pilot study)

NIR PLS calibration models #2 of willows chemical composition (pilot study)

Wood modifications & NIRS

- Thermal treatment
- Decay
- ISPM-15
- Densification
- Mechanical testing
- Wood after wood machining
- Coatings
- Weathering
- Service life prediction

Wood thermal treatment

Termovuoto: open system: (volatile products of the process are continuously removed from the kiln by means of a vacuum pump)

The treatment time: **3 hours** Pressure: **0.2 bar** treatment temperatures of **160**, **180**, **200 and 220°C**.

	fi	ir	spruce larch		larch		
parameter	ML	EMC	ML	EMC	ML	EMC	
range (cm ⁻¹)	7502-6098 5450-4246	6102-4246	10996-10098 9303-8501 5018-4435	8505-4435	9403-5446	9403-7498 6102-5446	
pre-processing	1der +MSC	1 der + VN	VN	1 der + VN	1 der + VN	1 der +MSC	· ⁺ 彡
r²	98.67	97.58	98.48	98.83	97.88	97.69	פ
RMSECV	0.26	0.25	0.25	0.17	0.39	0.19	ש
RPD	8.66	6.42	8.11	9.42	6.87	6.58	2
rank	3	3	3	4	4	5	L 10
195 samples measured x 5 spectra/sample = 975 spectr							

New spectra presentation

Xylograms; different species

сна он со

ni OH CH

extr. CH

Silver fir

(Abies alba)

nemi lig CH

European beech (*Fagus silvatica*)

no treated 160°C 180°C 200°C 220°C

extr. CH

European ash (Fraxinus excelsior)

no treated 160°C 180°C 200°C 220°C

Sessile oak (*Quercus peraea*)

35

PLS models for TM softwoods

TM of poplar veneers

Wood sterilization

How to detect if the wood was appropriately thermally treated?

standard ISPM Nº15;

- Temperature: 56°C in the core of wood
- Treatment time: 30minutes

IT-06-003 HT-SFN

ISPM-15

Low temperature thermal treatment of wood

- to investigate an effect of the temperature on wood samples of different wood species:
 - Spruce (softwood with resin)
 - Fir (softwood without resin)
 - Poplar (hardwood)
- different treatment times:
 - 0.5 hours (30 minutes)
 - 1 hour
 - 3 hours
 - 6 hours
- different treatment temperatures:
 - 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100°C
- three samples for repetition/statistics
- five-times spectra measurements for analysis of weathering effect:
 - Conditioned after treatment
 - Measured after 1month
 - Measured after 3 months
 - Measured after 6 mounts
 - Measured after 12 mounts

468 samples measured x 5 spectra/sample x 5 repetition/sample = **9360 spectra**

NIR-based method for verification of the ISPM-15 treatment*

Wood decay

Decay type identification

Result of IDENT evaluation:

Sample name: wood | Av. of 3 Sample: D:\TENNO\Av.right degraded inside.0 Date and time (measurement): 2011/06/06 12:21:35 (GMT+2) Method file: D:\Nasco wood\analysis\all fungi general classification.faa

Hit no.	Sample name	Hit qual.	Threshold	Group
1	prova1	0.21635	0.02779	reference
2	prova1	0.51081	0.95521	brown rot
3	prova1	0.90321	0.14314	white rot

IDENTIFIED AS brown rot

Archaeological wood

Short term waterlogging

spectra

nr	wave number (cm ⁻¹)	band assessment	functional group	pi peat	ne water	0 peat	ak water
1	4195	lignin	not assigned	0	0	X	0
2	4268	cellulose	CH, CH ₂	0	0	0	0
3	4401	cellulose, hemicelluloses	CH, CH ₂ , OH, CO	0	0	0	0
4	4546	lignin	CH, C=O	\times	×	0	•
5	4608	cellulose, hemicelluloses	not assigned	×	×	0	×
6	4686	hemicelluloses, lignin, extractives	CH, C=C, C=O	\times	×	•	•
7	4739	cellulose	ОН	0	0	0	0
8	4808	cellulose semi-crystalline and crystalline	OH, CH	0	0	0	0
9	5051	water	ОН	\times	×	0	0
10	5198	water	OH center of the range	0	0	0	0
11	5245	hemicelluloses	C=O	0	0	0	0
12	5495	cellulose	OH, CO	\times	×	ο	0
13	5593	cellulose semi-crystalline and crystalline	СН	0	0	\times	0
14	5666	not assigned	CH, CH ₂	•	•	о	0
15	5692	not assigned	CH ₂	•	•	\times	\times
16	5800	hemicelluloses (furanose / pyranose)	СН	0	0	0	0
17	5865	hemicelluloses	СН	0	0	0	0
18	5935	lignin	СН	0	0	0	0
19	5980	lignin	СН	0	0	0	0
20	6126	cellulose	ОН	0	0	\times	×
21	6286	cellulose crystalline	ОН	ο	о	о	0
22	6334	cellulose	ОН	×	×	\times	\times
23	6472	cellulose crystalline	ОН	0	0	\times	\times
24	6715	cellulose semi-crystalline	ОН	0	0	0	0
25	7003	amorphous cellulose, water	ОН	0	0	0	0
26	7092	lignin, extractives	ОН	Ο	0	0	0

Paper & NIR

3240 samples measured x 3 spectra/sample = 9720 spectra

Effect of soil type

biodegradation of the recycled paper with addition of 5% wheat bran

Effect of time

biodegradation of the recycled paper with addition of 5% wheat bran in the forest soil

PCA analysis of NIR spectra of paper before degradation tests and decomposed in forest soil for 4 and 8 weeks. Note: spectral range: 11000-4150cm⁻¹, pre-processing: 2nd derivative + VN

PLS models for paper samples

Estimation of mechanical stress

stresses

49

why does it work?

Identity test – coating recognition

Water solvent based products: #13, #26, #41

Organic solvent based products: #11, #12, #42

Preprocessing: 2 derivative + vector normalization, 9 smoothing points

Method: factorization

Regions (cm⁻¹): 4135-4350, 5365-5520, 5800-6000, 6290-6480, 7000-7200

51

Identification of coatings

band: 4200-10000cm⁻¹, 2 derivative, 5 smoothing points, vector normalization, 2 factors

Antique wooden floors

53

Monitoring of weathering

8 softwood, 3 hardwood, 12 exotic, 3 thermo modified wood 21 various water/organic based products with synthetic/natural/acrylic/alkyd resins/oils

Monitoring wood weathering

Short term weathering of wood

2015.03.26 09:00 N D3.8 x1.5k 50 ?m

Service life prediction

Research directions

spatial measurement Hyperspectral Imaging

in field measurement portable equipment

Weathered wood

PCA analysis performed on not weathered (a) and sample after 28 days of weathering (b) ⁵⁹

K-means classification

K-means clustering on the mosaic of weathered wood after pre-selecting 3 (a), 4 (b) and 5 classes (c)

NIR for log/biomass quality index in mountain forest

wood measurement at various harvesting moments

Wood defects detection

Calibration transfer

Conclussions

NIR technique has been successfully used for:

- species and provenance recognition
- estimation chemical composition, physical and mechanical properties
- monitoring chemical changes in wood during thermal modification, weathering, waterlogging and decay
- recognition and classification of coatings
- characterization of archeological wood and cultural heritage objects
- service life prediction of wooden elements and structures
- paper characterization
- in-field applications

Current developments in the fields of optics and electronics open new application for NIR. Its non-destructive character and simple measurements allows assisting experts in the estimation of material properties in a fast and repeatable way

Thank you very much