

ModWoodLife

WOOD PLASTIC COMPOSITES MADE OF RECYCLED AND REMEDIATED CREOSOTE TREATED WOOD-ASPECTS ON SCREW WITHDRAWAL PROPERTIES

Selcuk Akbas,

<u>Ali Temiz,</u>

M Hakkı Alma,

COST FP1407 Meeting, Brno

CCA, CCB and creosote had been widely used in pressure treated wood as a heavy duty preservative to protect wood against UC3, UC4 and UC5

CCA-treated wood being removed from service annually in the US would increase up to 16×10^6 m³ by 2020.

In Canada ~ $2x10^6$ m³ each year.

For Europe, 4x10⁶ ton per year of which ~2.4x10⁶ ton is toxic in Germany and France.

Creosote-treated wood amount is expected up $16 \times 10^6 \text{ m}^3$ by 2020 in US

In Canada, 4,5 x 10⁶ ton per year railway sleepers

For the disposal of treated wood after completing the service life;

recycling and recovery, chemical extraction, bioremediation, electrodialytic remediation thermal destruction etc.

Wood plastic composites

PAH in creosote ??

MATERIALS

Material types	Polymer types		Coupling agent
	HDPE	PP	(%)
	(%)	(%)	
Creosote treated	50	0	0
wood flour	47	0	3
(50%)	0	50	0
	0	47	3
Control (virgin	50	0	0
pine flour) (50%)	47	0	3
	0	50	0
	0	47	3
Remediated	50	0	0
wood flour	47	0	3
(50%)	0	50	0
	0	47	3

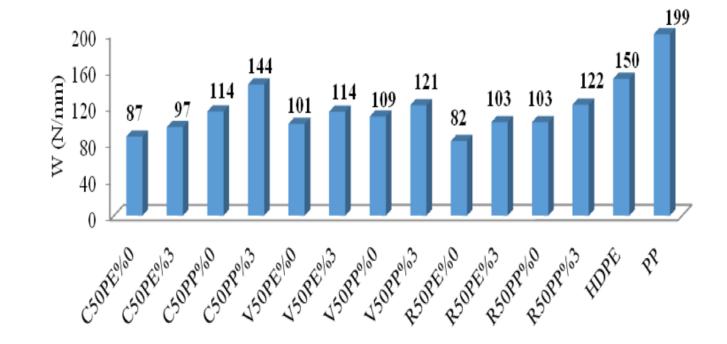
Wooden posts (pine) treated with creosote

HDPE + PP

Virgin Scots pine

MAPE


WPC Production



washed with acetone/ethanol solution and dried. Pre and postremediation processes were analysed by GC/MS, in particular for benzo(α)pyrene and total polycyclic aromatic hydrocarbons (PAHs) content of ground wood flours.

n-Hexane soxhlet extraction A large part of the PAHs and especially benzo(α)pyrene content were removed through remediation process 66% and 62%, respectively.

Samples for screw withdrawal test is carried out according to the ASTM D1037 standard

As shown in Figure 1, the resistance ranges from 82 N/mm to 114 N/mm and from 109 N/mm to 144 N/mm for HDPE and PP based WPCs, respectively. The greatest increase resistance was observed when using 3 wt% coupling agent in samples made with 50% creosote treated flour/PP composites.

Screw withdrawal resistances were improved with the addition of 3 wt% coupling agents for all WPCs. The type of polymer matrix (recycled or virgin HDPE and PP) significantly affected the withdrawal resistance

Thank you for your attention