

MODE I FRACTURE OF TROPICAL SPECIES USING THE GRID METHOD IN CONSTANT ENVIRONMENTS: EXPERIMENTAL RESULTS

B. Odounga^{1,2,3}, R. Moutou Pitti^{2,3,4}, E. Toussaint^{2,3}, M. Grediac^{2,3}

¹Université des Sciences et Techniques de Masuku, Franceville, Gabon ²Université Blaise Pascal, IP, Clermont-Ferrand, France ³CNRS, Institut Pascal, Aubière, France ⁴CENAREST, IRT, Libreville, Gabon

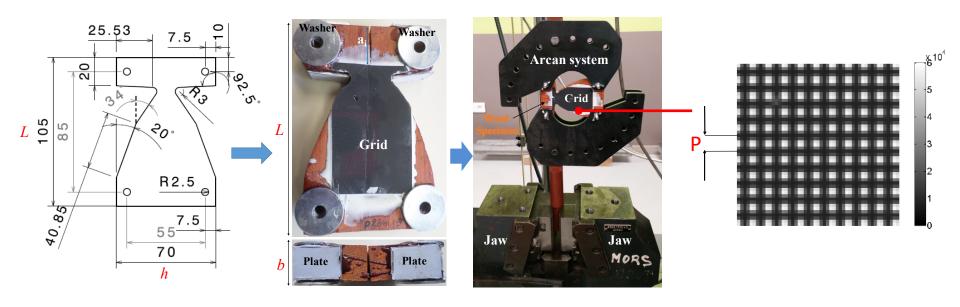
rostand.moutou pitti@univ-bpclermont.fr

This poster is sponsored by French National Research Council through the ANR JCJC Project CLIMBOIS N° 13-JS09-0003-01 and Labelled by ViaMeca

□ CONTEXT and CHALLENGES

- Importance of Gabonese forest
- Knowledge of tropical species
- Use of wood and timbers structures by locals

☐ THE PROBLEMATIC


- Mechanical Behavior of Pterocarpus Soyauxii (Padouk)
- Impact of climatic loadings

OBJECTIVE

- Adaptation of grid method to fracture in tropical wood
- Characterization of cracking in opening and mixed modes
- Knowledge and determination of fracture parameters
- determining the mechanical characteristics of tropical wood

MATERIALS AND METHODS

☐ MMCG SPECIMEN IN OPENING MODE

☐ CRITICAL ENERGY RELEASE RATE Gc

$$G_C = \left(\frac{dC}{da}\right)_d \cdot \frac{F_C^2}{2 \cdot b}$$
 Compliance $dC = \frac{dU}{dF}$ Critical load Initial crack Thickness

RESULTS

- **☐** FORCE DISPLACEMENT CURVES
- ☐ STRAIN MAPS AND DISPLACEMENT MAPS
 - ☐ CRITICAL ENERGY RELEASE RATE
 - **□** CONCLUSIONS AND PERSPECTIVES

See my Poster